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SECTION I

INTRODUCTION

The basic approach to the problem of elastic structural optimization as a constrained
minimization was presented by Schmit (Reference 1) in 1960, The concepts, which are based
upon the combination of methods of automatic structural analysis and operations research,
are now well known, The original methods, which are only strictly usable for small scale
structures, have been subjected to considerable development and are now applicable to realistic

large scale structures (References 2 and 3).

In order to solve the constrained optimization problem, a design space approach has been
developed. The coordinates of the space are the variables in the structure to be optimized,.
Within the space, a number of surfaces are defined to correspond to constraint conditions and
a merit function, The merit functionis frequently the weight of the structure but other criteria
may also be used., Using the nonlinear mathematical programming techniques reviewed later,
the minimum value of the merit functionis sought, subject to the prescribed constraints on the
response characteristics of the system. Generally, the cross-sectional areas and geometric
configuration form the design variables while the constraints are limits on stresses and dis-
placements. When appropriate, additional classes of design variables and constraints may be

used,

Although this approach has been developed and used for large scale optimizations, there
are certain limits to the scope and range of economic applicability. In effect, these limitations
restrict the use of the constrained optimization approachto cases in which the merit criterion
is a linear function of the design variables, This limit generally implies that only material
thicknesses and cross—-sectional areas can be treated as variables and that all configuration and
geometry must be fixed, For nonlinear merit functions, the search methods are less efficient,

and computational expense can become prohibitively large.

To overcome these restrictions, a modified approach, the unconstrained approach is
necessary to the problem. Since the natural expressionof the structural optimization problem
is a constrained minimization, the representation in an unconstrained form requires some
mathematical reformulation. To accomplish this, so-called penalty functions are defined that
account for nonsatisfaction of the constraint conditions, The penalty function, which is
continuous with continuous derivatives, is weighted and added to the basic merit or objective
function to form a ‘‘ created response surface’’, For each value of the weighting factor, a com-

plete continuous response surface exists whose minimum may be found using unconstrained
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search techniques. By successive reductions of the weighting factor, a series of minima is
determined whose limit, whenthe weighting factor vanishes, provides the constrained minimum

of the basic merit function only. This approach was originally proposed by Carroll (Reference 4),

By using the reformulated unconstrained minimization approach, a great degree of
generality is achieved in the definable classes of design variables, The only restriction that
is still applicable is that the variables be continuous functions, In many classes of structures,
e.g. space frames fabricated from standard sections, the assumption of continuous variation

of property is inappropriate. A method for considering discrete variation is required,

Toakley (Reference 5) in a paper dealing with minimum weight plastic design, considered J
discrete sections using three different methods, Since the methods of limit analysis were used,
the problem reduced to apurely linear one. The methods used are not applicable to the present
totally nonlinear regimes, Within the framework of the created response surface, a technique
has been developed that will permit the use of discrete variables, Effectively, the introduction
of discrete sections into the design process is equivalent to the specification of a multiplicity
of equality constraints, That is, a variable musthbe equal to one of a prescribed list of values,
To effect this an additional penalty function is introduced into the unconstrained minimization
process, The new function will vanish only when equality conditions are satisfied and will be
nonzero at all other points, By weighting this function in an appropriate manner the optimiza-

tion process can be made to converge on the discrete values,

Melosh and Luik in Reference 6 have developed an efficient reanalysis method using
self-equilibrating stress systems, This was combined with anallocation procedure to optimize

trusses with discrete or continuous section properties,

More recently, Schmit et al, in Reference 7 have applied the unconstrained minimization

method to study integrally stiffened cylindrical shells,
A small scale optimization program has heen developed using the unconstrained approach
with the capability of including discrete sections, Results obtained using this program are

included along with a description of the unconstrained techniques,

Before proceeding to a detailed presentation of the unconstrained minimization methods,
a brief discussion of the constrained problem is given,
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SECTION II

OPTIMIZATION

CONSTRAINED QPTIMIZATION

The general constrained optimization problem may be expressedin a strictly mathematical

form.

It is required to find the values of the variables 8y 8g ... By such that the function

f (a1 8y .+ . - an) has a minimum value subject to satisfaction of the p constraint conditions,

9, (a, . @ ---un)-l-kizo i=1,2, - p n

The function f may be the weight of the structure andthe functions g; the stresses and displace-

ments which must be less than prescribed values ki'

In order to discuss the method of solution, it is convenient to use a simple geometric
representation of the problem, A design space is defined in which each dimension represents
a variable, For graphical purposes it is necessary to limit this to two or three dimensional
space: but in the general problem with n variables, an n-dimensional hyperspace must be
defined, Since mathematical processes developed for the two or three dimensional spaces are
applicable to the higher order spaces, only the simple three dimensional case nced be dis-
cussed, If attention is restricted to designs in which the configuration and geometry are fixed
and only one cross-sectional dimension for each element is variable, the weight is a linear
function ofthese variables, Thenall designs of a given weight lie on a plane in three dimensions
(Figure la), In higher order spaces, the function is still linear and corresponds to a hyper-
plane, For every weight, such a linear function exists and hence all possible weights can be

represented by a family of parallel lines or planes.

In general the constraint conditions, Equation 1, are nonlinear functions., The equality
corditions will be represented by curved surfaces in the design space shown in Figure 1hb.
For each of the p constraints, a surface will exist, These surfaces are generally convex when
viewed from the origin. The dominant portions combine to form a composite constraint surface
as indicated in Figure lc, This surface then provides the boundary between the regions of the
gpace in which a design is acceptable (inequality of Equation 1 is satisfied) and is unacceptable
(inequality not satisfied), Since the nearer a weight surface is to the origin, the lower the

weight; the minimum weight acceptable design will occur when a weight surface touches the
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composite constraint at one point only (Figure 1d). The processes of determining this osculatory
point can now be reduced to the definition of a suitable travel path through the design space
from some arbitrary starting point until the optimum is reached, Each step along this path
involves a change in the variables and hence a redesign of the structure. Analyses are per-
formed at each step to provide information for the size and direction of future steps. In one
approach (Reference 2) two modes of travel are used to determine the optimum point, steepest
descent and side step. In the steepest descent mode, the weight is reduced in the most rapid
fashion until a constraint surface is met. The object of the next stage of redesign, the side
step, is to move to a point, as far as possible, away from the constraint surface from which a
new steepest descent may be initiated, This step is performed at constant weight, Details of

this approach, including methods of determining constraint derivatives, are presented in
Reference 2,

If additional variables are introduced to make the merit function nonlinear, it can be seen
that the above method is no longer strictly applicable, Travel orthogonal to the merit function
would be along a curved path, requiring continuous recomputation of the directions. A modified
version of this approach has been developed for nonlinear merit functions {(Reference 3) but
it has become apparent that the unconstrained formulation is more efficient and has greater
potential,

UNCONSTRAINED OPTIMIZATION

The constrained minimization requires the determination of the lowest value of some
function for which no mathematical minimum may be found, within a region bounded by pre-
scribed constraint conditions, In the unconstrained approach a combined continuous merit

function is defined to replace the original separate merit and constraint functions, With this
new single function, both the basic merit function and the constraints are approximated within

the feasible regicon, By suitable adjustment of an arbitrary weighting factor, the combined
function can be made to approximate the basic merit as closely as desired until in the limit the

desired minimum is found. To perform this transformation a so-~called penalty function is
created. This penalty, which is weighted by an arbitrary scalar, and combined with the basic
merit function, accounts for the nonsatisfaction of the constraint conditions, In a given

structural problem,

DVi = design variablesi=1, 2,.,, /¢

BF.kE jth response characteristic* of the structure under the kth loading condition
i=1,2,,. . mk=1,2,,, . n

U, L = Superscripts denoting upper and lower limiting values (i.e. constraint conditions)

* Response characteristic is taken here to mean critical stress, displacement or any other
measurable respoase of the structure to the loading system.
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Then a penalty function PC due tothe constraint conditions on both design variables and response
functions is defined by

£
L | |

P. = Y (Dv, —Dv.)[ + ]
© st tov! —ov oy, -ovt

m m

U L | I (2)
+ T (BF ) -BF )| + ]
ZI ka1 Ik ik terY -gr  BF -BFL
j=l k= ik ik jk ik

Since the various dezsign variables and behavior functions cantake on values of differing orders
of magnitude, it is necessaryto introduce scaling factors to ensure that each component of
the summationhas an approximately equal contribution to the total penalty. The total permissible
range, e.g. (DViU-DViL). for each characteristic is used as this factor, It can be seen that
this penalty function will tend to infinity when any constraint condition is satisfied but each
term diminishes rapidly at some distance from a constraint. To obtain the total function that
will be used in the unconstrained optimization, the above penalty is weighted by an arbitrary

factor and added to the basic merit function W.

The total function is then written as

F=Wdtrg P (3)

Penalty

'\

Merit (W)

Constraint Penalty
Function (Pc)

P
Constraint Variable

Figure 2. Unconstrained Minimization Penalty Functions
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Total Penalty
Function

Penalty

Constraint

Variables

Figure 3. Created Response Surfaces

The effect of this summation is to create a family of response surfaces, which will lie
in the nonviolated region of the design space and will be bounded by the composite constraint
surface, This approach, basically attributable to Carroll (Reference 4), is known as the Created

Response Surface Technique.

The physical meaning of these surfaces may bepresented graphically as in Figures 2 and
3, In the figures the horizontal axis represents the design variables whereas the vertical
direction represents the total value of the penalty function Equation 3, The basic merit function
W is some simple (monotonic) function of the design variables and it has a lowest value of L
corresponding to some constraint condition, The basic penalty Pc in Equation 2 has the general
form of a rectangular hyperbola having both he constraint condition and the horizontal axis
as aymptotes, By introducing the weighting factor r e @ family of hyperbolas is created, Com-
bining these hyperbolas with W, Equaion 3 yields the series of curves (surfaces) of Figure 3,
Each curve of the family exhibits a unique minimum, With decreasing values of r, these minima
approach the lowest wvalue L until, in the limit as r, tends to zero, the value L is actually
achieved. The successive minima of the created response surfaces are determined by uncon-

strained search techniques,
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With this approach, the precise nature of the basic merit function (linear or nonlinear)
is immaterial to the optimization process. Hence, the method has an almost unlimited range of

applications,

Before proceeding to discussion of the search techniques used, it is appropriate to
introduce the discrete variables problem at this stage.

OPTIMIZATION WITH DISCRETE VARIABLES

In the vast majority of structure, fabrication requirements will demand that some com-
ponents be standard sections for which the properties cannot be regarded as continuocusly

variable,

To produce many components (e.g, rolled steel sections) in sizes other than the standard
ranges are normally prohibitively expensive, Therefore, although a true optimum structure
(on a weight or other basis) may require nonstandard components, economics will dictate
the use of the cheaper standard size,

The original formulation of the optimization problem has only inequality constraints,
Equation I, In the discrete variable problem, equality conditions are required, The approach
to the incorporation of discrete variablesis based upon Fiacco and McCormick’s (Reference 8)

extension of the created response surface technique to include equality constraints,

In order to incorporate the discrete variables an additional penalty function P d is
introduced to account for nonsatisfaction of the specified discerete sizes,

The new penalty function has the form

‘Q d Dv; -DSj;
Pd = Z — 4

i1 . DS .,

1= ji=1 i)

(4)

where DV, = current value of one of the £ design variables
Dsij = the jth allowable discrete value for the ith design variable

and 7 indicates a finite product over j,
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In this function, the product term will ensure that each individual term of the summation
will vanish when the appropriate design variable assumes any one of its prescribed discrete
values, As for the constraint penalty, this discrete penalty is weighted and added to the

combined function, Equation 3, to form a new total penalty,
F=W+r, P(,'+r‘,1Pd (5)

The weighting factor r, was decreased invalue as the optimizationproceeded. Because of the
different nature of P q from Pc’ the weighting factorr d is increased successively, This forces the
design toassume the discrete values at whichthe penalty P d vanishes, The effect of including the

discrete penalty function can be illustrated graphicallyin two ways, The combined merit and

la—— Discrete Values -
Constraint g
. I
| Constraint !
| / Penalty
| Function
} !
!
Penalty : | F,
| |
I
: Discrete w
| Penalty —
: | Function
I
Pq
| -~
I —-
d
1 .1 Variables dz

Figure 4. Discrete Optimization Penalty Functions
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Figure 5, Created Response Surface for Discrete Optimization

constraint penalty functions are shown in Figure 4, The function P, has an oscillatory form,

as indicated in Figure 4, having minima at the discrete values dl’ c:iz, d3, etc, Combining all
functions, a total response surface such as depicted in Figure 5 results. Under normal
conditions the minimum will occur at a point such as D, The penalty P q does not take into
account the existence of main constraint conditions, As a result zituations can arise in which
the design reaches the point P, and attempts to converge on the unacceptable discrete
value dl‘ The constraint C1 prevents this, but a nondiscrete minimum is reached near P,
To correct this situation, the discrete value d1 is eliminated and the design will usually then
slip into the minimum at Q as desired. An alternative view of the problem is obtained in
Figure 6. The coordinates here are the design variables, The lines C1 and 02 represent the
active constraint conditions at whose intersection the true minimum lies, For a particular
value of r, and with r g set to zero, contour lines for the created response surface are shown,
The minimum lies at F5, some distance from the true minimum, As r, is reduced the
contours approach the constraints more closely. To include the penalty P q 2 rectangular grid
is superimposed, The lines correspond to the specified discrete values of the variables. The
function P, adds a peak on each rectangle and is zero at the intersection points, When r, be-

d d
comes very large, the design is forced very strongly toward these intersections,
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In principle, it ig possible to start with any feasible design and then to decrease the

weighting function r, and increase the weighting function r  simultaneously. But in practice,

it is difficult both to estimate the initial values of r, and r d czimd their relative rates of change
with progress in the minimization, In any case, it was argued that the discrete minimum is
always near the continuous minimum so that the continuous minimum design is always taken
as the starting point for a discrete design., This proximity of the discrete minimum design to
the continuous minimum design can best be seen from the contour plots used previously to
interpret the created response surface function, For a well-behaved created response surface,
function F, such as that shownin Figure 6, the discrete minimum is at one of the intersections

of the rectangular grid that encloses the continucus minimum,

in a practical problem, although it might be possible theoretically to select some initial
values for hoth r, and r a and manipulate both simultaneously in concert, it has been found
convenient to ignore the discrete requirements at first (i.e. r q- 0) until an optimum design

has been found and then proceed from that point with r d increasing in value,

MINIMIZATION PROCEDURES

To determine the unconstrained minimum of a function, a number of methods have been

developed in the general field of operations research,

The choice of the minimization procedure for the current work was influenced to a large
extent by the observation that the gradient of the function F is not easily calculated and that
the created response surface varies very rapidly near the constraints. This reduced the
choice of methods to one that did not require the calculation of the derivatives in closed form,
Fletcher (Reference 9) compared the more promising methods and results and suggests that
the methods of Powell (Reference 10) or Rosenbrock (Reference 11) would be suitable for
minimization with large numbers of variables, The Rosenbrock method was finally selected
because experience with the reliahility of the procedure has heen obtained on some earlier

problems,

In Rosenbrock®s method some initial point inthe n-variable spaceis selected, n orthonormal
directions, Pys Py - - - p, are defined, For the first step, these directions will normally be
paraliel to the coordinate directions, Travel alongthe first direction is initiated and continues
in the direction of decreasing value of the response functicon until a minimum (or approximation

thereto) is found. The total distance of travel is designated by the scalar a ., New travel

1
along the second direction nowtakesplace, usingthe previous minimum as a starting point and
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this continues until a minimum is found, Thisis travel distance a .. The process is repeated

2
for each of the n-directions inturn, Fromthe results of these explorations a new set of vector

directions dy» Gy - - - Q, aTe then constructed so that

= +- —=-=-+
q “H’."’“zpz a_p

a
©
13
Q
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©
N
+
I
|
1
1
|
+
Q
©
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n
: ) (6)
1

®n Pq

L
2
]

The set of vector directions Ayr Ay - - - Ay ig then orthonormalized by the Schmit process to

give a new set of travel vectors Pys P Py New travel may now be initiated and the entire

process repeated until the Optimunf is found, In physical terms, this can be regarded as a
linear extrapolation process. The first generated vector q;- which is subsequently normalized
to provide the first travel direction Pys is the vector joining the initial and final points of the
exploration, It was along this direction that the greatest reduction of the merit function was
achieved; hence, it is intended that furthertravel along this direction would accomplish further

meaningful reductions in the function,

In the original work, Rosenbrock proposed a method of determining the distance of travel
a, to minimize approximately the merit function, An arbitrary step length e was first tried,
If this reduced the value of the function, a new step length 8 + € was taken, where S +is
some scalar greater than unity. If the step did not effect a reduction, a new step-3-¢ was
taken, with 0 < [3- <1, In practice, suitable values selected for B+ and [S- are 3.0 and 0.5
respectively, No attempt was made to find the exact minimum in the chosen direction. Inter-
polation or other procedures were ruled out on the grounds that the additional computation
costs were unnecessary, since the exact value ofthe minimum at that stage has little influence
on the later search procedure, In fact, with experience, it has been found that it is sufficient

to work with a maximum of two successful steps along any travel direction,
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SECTION III

COMPUTER PROGRAM

In order to evaluate quantitatively the effectiveness of the techniques discussed in the pre-
vious section, a pilot computer program for the optimization of small scale structures has
been developed,

To minimize the effort involved in the development of a pilot program a relatively in-
efficient analysis module was selected from a previously coded computer program. This
analysis was limited to approximately 50 degrees of freedom and originally contained only an

axial force member in the element library. This was considered sufficient for initial research,

INITIAL DESIGN PARAMETERS

The reciprocal nature of the penalty function requires that the constraints of the problem
are never violated, Therefore, it is necessarytopick starting values of the design parameters
that do not violate any of the constraints, This is achieved by means of a fully stressed design
that, if necessary, is scaled up so that the displacement constraints are satisfied, A fully
stressed design for multiple loads is that design in which every element is subjected to its
maximum allowable stress in at least one load condition, The design is accomplished by
assuming that the stress in each element is affected only by its size and that there is no
cross effect due to static indeterminacy between the elements, The element sizes are then
proportioned to give a fully stressed design, Because there is a cross effect, the fully
stressed design is not achieved imnﬁediately, However, repeated applications of this pro-
cedure usually lead to rapid convergence. In practice, because of the need to keep away from
the constraints, lower values of the stress constraints are used for the design, typically 0,95
times the allowable stresses.

BASIC METHOD

Two slightly different methods can be adopted for reducing the scaling factors T, during
the course of the optimization, The first approachis to keep r, constant and find the minimum
of the function F, Then reduce r, and find the next minimum, etc. The second approach is to
reduce r, with the progress of the minimization, because it is pointless to find the exact
minimum for every value of T, sincethe exact minimum is only required for the final value of
T, Because previous workers had used the first approach, it was decided to explore the
second approach,
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IMPROVED METHOD

After coding of the unconstrained minimizationusingthe created response surface approach
with Rosenbroek’s search, a number of simple problems were used to check the operation of
the program, Although the methods used yielded minima, it was felt that considerable improve-
ments in operational efficiency could be produced, Tothis end three modifications in principle

were introduced, all of which produced significant reductions in computational expense,

1. Extrapolations Techniques, When using the created response surface approach as

discussed previously, the weighting factor T, for the penalty function Pc is assumed to have
some artibrary initial value, This factor has been selected to make the value of the penalty
initially equal to the value of the merit function at the starting point, The factor r, is then
reduced stepwise until further reduction produces no appreciable decrease in the merit
function W,

Such a process may require a considerable number of iterations, To accelerate the pro-
cedure, an extrapolation method was developed, The extrapolationprocedure was based on the
assumption that each component of the minimum of the function F(DV, rc) can be expanded in

1/2

a power series in r,. A two term series was used

i
DVirg ) =a4 t+ a rc/2 (7)

The initial weighting factor r, was chosen sothat the penalty function was equal to the weight,
Three values of r, were used, the value of r, being reduced by a factor of 4 after each min-
imization, Substitution of the values ofaparameter at a consecutive minimum for two values of

r. defined the constants a anda,, Equation7 was then used to estimate the values of the design

1
parameters (DVi) for the next weighting factor T Equation 7 also was used to extrapolate to

the minimum as the weighting factor r, tends to zero since by Equation (7)

DV(rc )= a, as r, —~o (8)

Finally, we note that, for the extrapolation process, Fiacco and McCormick stressed the
importance of an accurate evaluation of the minimum for each value of I
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2, Truncated Search, It was noted that during the search in 4 chosen direction of the

Rosenbrock method, the third step after two successes usually proved unproductive, An ex-
amination of Rosenbrock’s original results showed an improvement in the minimization of a
function for a fixed number of trials as the factor [+ was increased from 1 to 5. It was
conjectured that the improvement was brought about by the reduction of the number of {rials
required in the search along each of the chosen directions. It was therefore decided to
truncate the search after two successful steps. Similarly, it was observed that a step, follow-
ing two failures and a success, also proved unproductive and the search was also truncated

after the successful step.

3. Linearization Methods., Much time in any optimization procesgs is taken up by the

repeated complete reanalyses that are necessary after every change of design parameters,
Although the response characteristics (stresses, displacements) are strictly nonlinear functions
of all the possible design variables, it is practical to regard the rates of change of these
responses to be sensibly constant for small changes in the design parameters, That is, the
continuously curved response characteristics may be assumed te be stepwise linear, This may
lead to slight inaccuracies, especially when step sizes are large, On the other hand, on
search procedures great accuracy is not necessary {and may be needlessly expensive to
obtain) in early stages when remote from the optimum. Near the optimum the step sizes

generally become very small and the linearization concept is highly accurate,
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SECTION IV

EXAMPLE PROBLEMS

INITIAL ATTEMPT

Two problems were investigated, the first that of the three bar truss studied by Schmit
and Mallett (Reference 12) and shown in Figure 7. Table 1 gives the three sets of applied
loads. A fully stressed design was first found and the value of r, was gelected so that the
ratio of the penalty function to the weight was one to ten, A function minimization was then
carried out with the r, being reduced to 0.7 of its value after each stage. The result of
8.717 1b was obtained by Schmit and Mallett and 8,720 1b by Gellatly et, al. (Reference 2),
The second problem was that of the 25-bar truss,

The next example chosen is that ofthe 25-bar truss studied by Fox and Schmit (Reference
13)., Fox and Schmit included buckling constraints and used tube diameter and thickness as the
design variables, The cross-sectional area of the circular tubes are used here as the design
variables, The Euler criteria are included as stress limits for each member, The stress
limits unless modified by the Euler buckling criteria are specified to be £40,000 psi, The
displacement limits for each displacement component of any node in the truss are + 0.35 in,
The truss is shown on Figure 8, Symmetry is imposed about the XZ and YZ plane

L/ [ L L] | &t LS L
1 A

2
45° 459

20 in.

Figure 7, Three-Bar Truss
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75 in.

75 1in,

10

200 in,

200 in.

Figure 8. Transmission Tower
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TABLE I

LOADS ON THREE-BAR TRUSS

Coig?.iion P PY (Eq AT}, (Ea AT) 2 (EalT) 3
1 10°1b 0 6500 psi | 13,000 psi | 19,500 psi
2 -9.5459 x 10™1b| -9.5459 x 10*1b| 19,500 psi | 13,000 psi | 6500 psi
3 8.195 x 10%1b| -5,7358 x 10%1b 0 0 0
TABLE 2
LOADS ON 25-BAR TRUSS
Load Nodal Direction of Load
Condition Point X Y A
1 1000 10,000 -5,000
2 0 10,000 -5,000
1 3 500 0 0
6 500 0 0
1 0 20,000 -5,000
2
2 0 -20,000 -5,000
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by means of a linking feature that forms the following groups of cross-sectional areas:

A=A =A_ .7 A A = A =A20=A2| and Azz -‘-A23=A24 25 -

"
P

The truss is only loaded at two nodal points. The imposed loading on the truss is given in
Table 2, This second example was constructed so that the displacement constraints were
active. When the same procedure that was applied to the three-bar truss was applied to the
second example, the function F proved difficult to minimize, A minimum was only obtained
after 30 Rosenbrock stages and required about 20 minutes of IBM 7090 time, Minimum weight
obtained was 555 1b, This may be compared with a weight of 570 1b by Fox and Schmit
(Reference 13) and 551 1b by Gellatly (Reference 3), The differences between first and the last

weight are though to be due to the different accuracy criteria,

However, it is relevant to note that progress from the 570-1b weight to 555-1b took about
a half of the computing time,

IMPROVEMENT GF BASIC METHOD

The introduction of the improved procedures resulted in a significant reduction of the

computing time required to minimize the twenty-five bar truss,

1, Extrapolation Technique. The extrapolation technique resulted in an extrapolated

minimum weight of 556 1b (minimum weight atlast value of r, = 558 1b), The number of stages

in the Rosenbrock minimization and the computing time were reduced by a factor of two,

2, Truncated Search, The truncated search procedures brought the average number of

steps in each searchdirection from fourtothree, which saved about a quarter of the computing

time and the minimum weight was not affected.
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3. Linearized Procedures. Before the start of each stage, the rate of change of the

stresses and displacements with respect to the step length in each of the chosen directions
ware evaluated by a finite difference procedure, Since an average of three function evaluations
are required in each search direction, this linearized approach reduced the number of stress
analyses required at each stage by a third of the original number and reflected itself in a
halving of the computing time, The final optimization with all the improvements incorporated
required 3,6 minutes of IBM 7090 time. The progress in reducing the computing times is

summarized in Table 3,

Finally, it is estimated that a further halving of the computing time can be achieved by
using the well-known techniques of elastic redesign (see for instance Gellatly and Gallagher,
Reference 14) which make use of the total differential of the equations of equilibrium. The
estimated time of 1,8 minutes IBM 7090 is of the same order as the time of 1.2 minutes
UNIVAC 1107 estimated by Fox and Schmit for the solution of this problem by the integrated
approach to structural synthesis, However, it should be noted that this suggested improvement
requires a doubling in the size of the computer store, which may in fact be too stringent a

requirement,

The second interesting observation of the minimization procedure is that the search
along the Py direction provides an order of magnitude improvement over the search along the
other directions. It is as if the only purpose of the search along the other directions is to
explore and set up a new best direction for Pl.
DISCRETE DESIGN

1, Example 1, Three-Bar Truss,

The same three-bar truss was used as a first example for discrete design, The same load
conditions were used, Four discrete designs were produced, Sections were allowed to vary in
increments of 0.2, 0.3, 0.4 and 0.5 in.z, in turn and starting from its lowest permissible value
of 0.001. Sufficient sections were specified so that the discrete design did not take on the
highest specified value,

To achieve the design with discrete variations of 0.5 in.z, it was necessary to force back

element 3 and then element 1 in turn,
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TABLE 3

IMPROVEMENTS IN COMPUTING TIME

Min, Weight Comp, Time
Method 1b IBM 70%0 min. Stages

Initial Method 555 20 30
Extrapolation 556 11 15
Extrapelation and Truncated

Search 556 8 14
Extrapolation, Truncated

Search and Linearized

Change 555 3.6 14

TABLE &

DISCRETE DESIGN OF THREE-BAR TRUSS

Increments % Penalty Minimum Cross = Sectional Area
in Areas, of Discrete | Weight in,2
in. ? Design lb Element 1 { Element 2 Element 3
Continuous 0 8,717 1,113 0.577 1.544
0.2 1 8.791 1,195 | 0.400 1.600
0.3 11 9.782 1,200 0.600 1,800
0.4 1 8,791 1.195 0.400 1,600
0.5 28 11.008 1.500 0,500 2,000
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The results are presented in Table 4, It can be seen that the design for sections with
increments in area of 0.4 in.2 is the same as that for 0.2 in.z. Thus the weight of the discrete
designs do not increase monotonically but are somewhat dependent on the distance of travel

required to reach a discrete design from the minimum continuous design,
2, Example 2, Twenty-five Bar Truss,

The twenty-five bar truss shown in Figure 8 was used as a second example of discrete
design, Two discrete designs were effected, Sections were allowed to vary in increments of
0.4 and 0.8 in.z.

The results of the discrete designs are shown in Tables 5 and 6, Table 5 gives the weight
of the optimum designs, It also gives details on which specified sections had to be removed
from the list in order to achieve the discrete design. Table 6 gives the cross-sectional areas
obtained in the optimum design, It will be noted that in the cross-sectional areas, Al moves a
considerable distance away from its value at the continuous minimum. It was this possibility
that prevented the use of a simpler searchthrough all the combinations of the discrete sections
adjacent to the continuous design parameter values, This large change appears to be due to the
design beinginsensitive tothe designparameter Al' Because improvements in the minimization
procedure were made at the same time asthe above results were being obtained, it is difficult
to quote typical computing times for the analysis, However, it was observed that on average

12-15 Rosenbrock stages were required to reach adiscrete design in the twenty-five-bar truss.

TABLE 5

RESULTS OF DISCRETE OPTIMIZATION, 25-BAR TRUSS

Increments Weight of Discrete Number of ] Element No, of Element Size
in Sectional Design, Sections to Which Deletion | Deleted from
Areas, in,2 ib Be Discretized Is Made List, in.2
Continuous 554.9
0.4 595.4 19 21 1.6
8 5 2.0
1 1 1.2
1 1 1.6
0.8 642.4 11 22 2.4
1 1 0.0111(min,)
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TABLE 6

OPTIMAL CROSS-SECTION AREAS FOR DISCRETE DESIGN

Increments Area for Elements,

in Specified in,

Sections,

Continuous 0.189 | 2,142 2,488 0.038 0,084 | 0,694 1.866 2,771
0.4 2,009 | 2,400 ] 2.400 0.011 0.011 | 0,800 2.0001} 2,800
0.8 1.56 2,400 | 2,400 0,011 0.011 | 0,800 2,400 3,200

x

28
%.
o 20
=
£
> 15 |—
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e}
£

10 F—
o o)
e X Three-Bar Truss
a 5 O Twenty=Five-Boar Truss

0 | | ] | L]

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Increment / Maximum Value
Figure 9. Penalty Due to Discrete Design
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Finally, Figure 9 shows the change in weight of the otpimum design with increase in the
size of the increments in the specified cross-sectional areas, The increase in weight is shown
as a percentage of the continuous design while the size of the increment is shown as a fraction

of the maximum design section used in the continuous design.

Although the results do not increase regularly, thetrend is as expected, i,e,, the optimum

weight increases in the size of increments in the specified cross-sectional area,

CONCLUSIONS

The Created Response Surface Technique was successfully applied to some problems of
structural optimization with multi-load conditions, The original method was modified to take
advantage of the interaction between the optimization procedure and the response of the
structure to changes in sectional areas. This, whencoupled with the r extrapolation procedure,

resulted in considerable savings in computing time,

Discrete design was effected by introducing a penalty function which only vanished when

the variables were at the specified discrete values,
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